Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.511
Filtrar
1.
Food Chem ; 448: 139135, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569405

RESUMO

The impacts of enzymatically produced acylglycerol and glycerin monostearate on the characteristics of gelatin-stabilized omega-3 emulsions and microcapsules were investigated. Tuna oil was enzymatically produced and the resulting acylglycerol was mixed with tuna oil at 12.5% (w/w) to prepare a novel oil phase. This oil phase was stabilized by gelatin to prepare oil-in-water emulsions and subsequent microcapsules via complex coacervation. The tuna oil with glycerin monostearate (GMS) at 1 and 2% (w/w) were used as controls. Results showed that both acylglycerol and GMS significantly reduced the emulsion droplet size and zeta potential, while increasing the viscoelasticity and stability. The diacylglycerol/monoacylglycerol were involved in the oil/water interfacial layer formation by lowering interfacial tension and increasing droplet surface hydrophobicity. Overall, the changed emulsion properties promoted the complex coacervation and contributed to the formation of microcapsules with improved oxidative stability. Therefore, enzymatically produced acylglycerol can develop high-quality stable omega-3 microencapsulated novel food ingredients.


Assuntos
Cápsulas , Emulsões , Ácidos Graxos Ômega-3 , Óleos de Peixe , Gelatina , Emulsões/química , Cápsulas/química , Gelatina/química , Ácidos Graxos Ômega-3/química , Óleos de Peixe/química , Animais , Tamanho da Partícula , Glicerol/química , Atum , Glicerídeos/química , Interações Hidrofóbicas e Hidrofílicas , Biocatálise
2.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641593

RESUMO

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Assuntos
Candida glabrata , Ácido Oleico , Candida glabrata/genética , Candida glabrata/metabolismo , Ácido Oleico/metabolismo , Carbono/metabolismo , Glicerol , Antifúngicos/metabolismo , Estresse Oxidativo , Biofilmes , Glucose/metabolismo , Glioxilatos/metabolismo
3.
BMJ Open ; 14(4): e084704, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38658011

RESUMO

INTRODUCTION: Various approaches are employed to expedite the passage of meconium in preterm infants within the neonatal intensive care unit (NICU), with glycerine enemas being the most frequently used. Due to the potential risk of high osmolality-induced harm to the intestinal mucosa, diluted glycerine enema solutions are commonly used in clinical practice. The challenge lies in the current lack of knowledge regarding the safest and most effective concentration of glycerine enema. This research aims to ascertain the safety of different concentrations of glycerine enema solution in preterm infants. METHODS AND ANALYSIS: This study protocol is for a single-centre, two-arm, parallel-group, double-blind and non-inferiority randomised controlled trial. Participants will be recruited from a NICU in a teriary class A hospital in China, and eligible infants will be randomly allocated to either the glycerine (mL): saline (mL) group in a 3:7 ratio or the 1:9 ratio group. The enema procedure will adhere to the standardised operational protocols. Primary outcomes encompass necrotising enterocolitis and rectal bleeding, while secondary outcomes encompass feeding parameters, meconium passage outcomes and splanchnic regional oxygen saturation. Analyses will compare the two trial arms based on an intention-to-treat allocation. ETHICS AND DISSEMINATION: This trial is approved by the ethics committee of the Medical Ethics Committee of West China Second University Hospital of Sichuan University. The results will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: ChiCTR2300079199.


Assuntos
Enema , Glicerol , Recém-Nascido Prematuro , Mecônio , Humanos , Enema/métodos , Recém-Nascido , Método Duplo-Cego , Glicerol/administração & dosagem , Unidades de Terapia Intensiva Neonatal , Enterocolite Necrosante/prevenção & controle , China , Feminino , Masculino
4.
Mol Biol Rep ; 51(1): 578, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668789

RESUMO

Mg2+-independent phosphatidic acid phosphatase (PAP2), diacylglycerol pyrophosphate phosphatase 1 (Dpp1) is a membrane-associated enzyme in Saccharomyces cerevisiae. The enzyme is responsible for inducing the breakdown of ß-phosphate from diacylglycerol pyrophosphate (DGPP) into phosphatidate (PA) and then removes the phosphate from PA to give diacylglycerol (DAG). In this study through RNAi suppression, we have demonstrated that Trypanosoma brucei diacylglycerol pyrophosphate phosphatase 1 (TbDpp1) procyclic form production is not required for parasite survival in culture. The steady-state levels of triacylglycerol (TAG), the number of lipid droplets, and the PA content are all maintained constant through the inducible down-regulation of TbDpp1. Furthermore, the localization of C-terminally tagged variants of TbDpp1 in the lysosome was demonstrated by immunofluorescence microscopy.


Assuntos
Glicerol/análogos & derivados , Lisossomos , Trypanosoma brucei brucei , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Lisossomos/metabolismo , Lisossomos/enzimologia , Triglicerídeos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/genética , Interferência de RNA , Difosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Diglicerídeos/metabolismo , Ácidos Fosfatídicos/metabolismo
5.
Food Microbiol ; 121: 104513, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637075

RESUMO

Saccharomyces cerevisiae is a major actor in winemaking that converts sugars from the grape must into ethanol and CO2 with outstanding efficiency. Primary metabolites produced during fermentation have a great importance in wine. While ethanol content contributes to the overall profile, other metabolites like glycerol, succinate, acetate or lactate also have significant impacts, even when present in lower concentrations. S. cerevisiae is known for its great genetic diversity that is related to its natural or technological environment. However, the variation range of metabolic diversity which can be exploited to enhance wine quality depends on the pathway considered. Our experiment assessed the diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds. Results pointed out great yield differences depending on the metabolite considered, with ethanol having the lowest variation. A negative correlation between ethanol and glycerol was observed, confirming glycerol synthesis as a suitable lever to reduce ethanol yield. Genetic groups were linked to specific yields, such as the wine group and high α-ketoglutarate and low acetate yields. This research highlights the potential of using natural yeast diversity in winemaking. It also provides a detailed data set on production of well known (ethanol, glycerol, acetate) or little-known (lactate) primary metabolites.


Assuntos
Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Fermentação , Glicerol/metabolismo , Carbono/metabolismo , Etanol/metabolismo , Acetatos/metabolismo , Lactatos
6.
AMA J Ethics ; 26(4): E289-294, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564743

RESUMO

This commentary responds to a case about diethylene glycol-contaminated glycerin in cough syrup. Glycerin is a commonly used excipient in medicines to improve texture and taste. Excipients are typically pharmacologically inactive ingredients contained in prescription and over-the-counter drugs that play a critical role in the delivery, effectiveness, and stability of active drug substances. The commentary first canvasses how contaminants enter the excipient supply chains. One way is by misleading labeling or intentional adulteration by manufacturers or suppliers. Another way is by human or systemic error. This commentary then discusses quality control testing and suggests the ethical and clinical importance of increased transparency in excipient supply chains.


Assuntos
Excipientes , Glicerol , Criança , Humanos , Excipientes/efeitos adversos , Preparações Farmacêuticas , Contaminação de Medicamentos , Tosse/tratamento farmacológico
7.
Water Environ Res ; 96(4): e11017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565318

RESUMO

This study explored the implementation of mainstream partial denitrification with anammox (PdNA) in the second anoxic zone of a wastewater treatment process in an integrated fixed film activated sludge (IFAS) configuration. A pilot study was conducted to compare the use of methanol and glycerol as external carbon sources for an IFAS PdNA startup, with a goal to optimize nitrogen removal while minimizing carbon usage. The study also investigated the establishment of anammox bacteria on virgin carriers in IFAS reactors without the use of seeding, and it is the first IFAS PdNA startup to use methanol as an external carbon source. The establishment of anammox bacteria was confirmed in both reactors 102 days after startup. Although the glycerol-fed reactor achieved a higher steady-state maximum ammonia removal rate because of anammox bacteria (1.6 ± 0.3 g/m2/day) in comparison with the methanol-fed reactor (1.2 ± 0.2 g/m2/day), both the glycerol- and methanol-fed reactors achieved similar average in situ ammonia removal rates of 0.39 ± 0.2 g/m2/day and 0.40 ± 0.2 g/m2/day, respectively. Additionally, when the upstream ammonia versus NOx (AvN) control system maintained an ideal ratio of 0.40-0.50 g/g, the methanol-fed reactor attained a lower average effluent TIN concentration (3.50 ± 1.2 mg/L) than the glycerol-fed reactor (4.43 ± 1.6 mg/L), which was prone to elevated nitrite concentrations in the effluent. Overall, this research highlights the potential for PdNA in IFAS configurations as an efficient and cost-saving method for wastewater treatment, with methanol as a viable carbon source for the establishment of anammox bacteria. PRACTITIONER POINTS: Methanol is an effective external carbon source for an anammox startup that avoids the need for costly alternative carbon sources. The methanol-fed reactor demonstrated higher TIN removal compared with the glycerol-fed reactor because of less overproduction of nitrite. Anammox bacteria was established in an IFAS reactor without seeding and used internally stored carbon to reduce external carbon addition. Controlling the influent ammonia versus NOx (AvN) ratio between 0.40 and 0.50 g/g allowed for low and stable TIN effluent conditions.


Assuntos
Compostos de Amônio , Esgotos , Esgotos/microbiologia , Amônia , Desnitrificação , Metanol , Glicerol , Nitritos , Projetos Piloto , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Bactérias , Nitrogênio , Oxirredução
8.
Sci Rep ; 14(1): 7774, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565877

RESUMO

Human microbiota mainly resides on the skin and in the gut. Human gut microbiota can produce a variety of short chain fatty acids (SCFAs) that affect many physiological functions and most importantly modulate brain functions through the bidirectional gut-brain axis. Similarly, skin microorganisms also have identical metabolites of SCFAs reported to be involved in maintaining skin homeostasis. However, it remains unclear whether these SCFAs produced by skin bacteria can affect brain cognitive functions. In this study, we hypothesize that the brain's functional activities are associated with the skin bacterial population and examine the influence of local skin-bacterial growth on event-related potentials (ERPs) during an oddball task using EEG. Additionally, five machine learning (ML) methods were employed to discern the relationship between skin microbiota and cognitive functions. Twenty healthy subjects underwent three rounds of tests under different conditions-alcohol, glycerol, and water. Statistical tests confirmed a significant increase in bacterial population under water and glycerol conditions when compared to the alcohol condition. The metabolites of bacteria can turn phenol red from red-orange to yellow, confirming an increase in acidity. P3 amplitudes were significantly enhanced in response to only oddball stimulus at four channels (Fz, FCz, and Cz) and were observed after the removal of bacteria when compared with that under the water and glycerol manipulations. By using machine learning methods, we demonstrated that EEG features could be separated with a good accuracy (> 88%) after experimental manipulations. Our results suggest a relationship between skin microbiota and brain functions. We hope our findings motivate further study into the underlying mechanism. Ultimately, an understanding of the relationship between skin microbiota and brain functions can contribute to the treatment and intervention of diseases that link with this pathway.


Assuntos
Glicerol , Microbiota , Humanos , Encéfalo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Cognição , Eletroencefalografia , Água
9.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612541

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol synthesis. Understanding its substrate recognition mechanism may help to design drugs to regulate the production of glycerol lipids in cells. In this work, we investigate how the native substrate, glycerol-3-phosphate (G3P), and palmitoyl-coenzyme A (CoA) bind to the human GPAT isoform GPAT4 via molecular dynamics simulations (MD). As no experimentally resolved GPAT4 structure is available, the AlphaFold model is employed to construct the GPAT4-substrate complex model. Using another isoform, GPAT1, we demonstrate that once the ligand binding is properly addressed, the AlphaFold complex model can deliver similar results to the experimentally resolved structure in MD simulations. Following the validated protocol of complex construction, we perform MD simulations using the GPAT4-substrate complex. Our simulations reveal that R427 is an important residue in recognizing G3P via a stable salt bridge, but its motion can bring the ligand to different binding hotspots on GPAT4. Such high flexibility can be attributed to the flexible region that exists only on GPAT4 and not on GPAT1. Our study reveals the substrate recognition mechanism of GPAT4 and hence paves the way towards designing GPAT4 inhibitors.


Assuntos
Glicerol , Glicerofosfatos , Simulação de Dinâmica Molecular , Humanos , Ligantes , Glicerol-3-Fosfato O-Aciltransferase , Isoformas de Proteínas , Fosfatos
10.
Cells ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607011

RESUMO

Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) have been recognized as important mediators in migraine but their mechanisms of action and interaction have not been fully elucidated. Monoclonal anti-CGRP antibodies like fremanezumab are successful preventives of frequent migraine and can be used to study CGRP actions in preclinical experiments. Fremanezumab (30 mg/kg) or an isotype control monoclonal antibody was subcutaneously injected to Wistar rats of both sexes. One to several days later, glyceroltrinitrate (GTN, 5 mg/kg) mimicking nitric oxide (NO) was intraperitoneally injected, either once or for three consecutive days. The trigeminal ganglia were removed to determine the concentration of CGRP using an enzyme-linked immunosorbent assay (ELISA). In one series of experiments, the animals were trained to reach an attractive sugar solution, the access to which could be limited by mechanical or thermal barriers. Using a semi-automated registration system, the frequency of approaches to the source, the residence time at the source, and the consumed solution were registered. The results were compared with previous data of rats not treated with GTN. The CGRP concentration in the trigeminal ganglia was generally higher in male rats and tended to be increased in animals treated once with GTN, whereas the CGRP concentration decreased after repetitive GTN treatment. No significant difference in CGRP concentration was observed between animals having received fremanezumab or the control antibody. Animals treated with GTN generally spent less time at the source and consumed less sugar solution. Without barriers, there was no significant difference between animals having received fremanezumab or the control antibody. Under mechanical barrier conditions, all behavioral parameters tended to be reduced but animals that had received fremanezumab tended to be more active, partly compensating for the depressive effect of GTN. In conclusion, GTN treatment seems to increase the production of CGRP in the trigeminal ganglion independently of the antibodies applied, but repetitive GTN administration may deplete CGRP stores. GTN treatment generally tends to suppress the animals' activity and increase facial sensitivity, which is partly compensated by fremanezumab through reduced CGRP signaling. If CGRP and NO signaling share the same pathway in sensitizing trigeminal afferents, GTN and NO may act downstream of CGRP to increase facial sensitivity.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Feminino , Ratos , Masculino , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Glicerol , Ratos Wistar , Roedores/metabolismo , Óxido Nítrico , Nociceptividade , Nitroglicerina/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Açúcares
11.
Appl Microbiol Biotechnol ; 108(1): 297, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607564

RESUMO

Glycosidic osmolytes are widespread natural compounds that protect microorganisms and their macromolecules from the deleterious effects of various environmental stresses. Their protective properties have attracted considerable interest for industrial applications, especially as active ingredients in cosmetics and healthcare products. In that regard, the osmolyte glucosylglycerate is somewhat overlooked. Glucosylglycerate is typically accumulated by certain organisms when they are exposed to high salinity and nitrogen starvation, and its potent stabilizing effects have been demonstrated in vitro. However, the applications of this osmolyte have not been thoroughly explored due to the lack of a cost-efficient production process. Here, we present an overview of the progress that has been made in developing promising strategies for the synthesis of glucosylglycerate and its precursor glycerate, and discuss the remaining challenges. KEY POINTS: • Bacterial milking could be explored for fermentative production of glucosylglycerate • Glycoside phosphorylases of GH13_18 represent attractive alternatives for biocatalytic production • Conversion of glycerol with alditol oxidase is a promising strategy for generating the precursor glycerate.


Assuntos
Glicosídeos , Compostos Orgânicos , Biocatálise , Fermentação , Glicerol
12.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38587863

RESUMO

Previously, we reported an engineered Saccharomyces cerevisiae CEN.PK113-1A derivative able to produce succinic acid (SA) from glycerol with net CO2 fixation. Apart from an engineered glycerol utilization pathway that generates NADH, the strain was equipped with the NADH-dependent reductive branch of the TCA cycle (rTCA) and a heterologous SA exporter. However, the results indicated that a significant amount of carbon still entered the CO2-releasing oxidative TCA cycle. The current study aimed to tune down the flux through the oxidative TCA cycle by targeting the mitochondrial uptake of pyruvate and cytosolic intermediates of the rTCA pathway, as well as the succinate dehydrogenase complex. Thus, we tested the effects of deletions of MPC1, MPC3, OAC1, DIC1, SFC1, and SDH1 on SA production. The highest improvement was achieved by the combined deletion of MPC3 and SDH1. The respective strain produced up to 45.5 g/L of SA, reached a maximum SA yield of 0.66 gSA/gglycerol, and accumulated the lowest amounts of byproducts when cultivated in shake-flasks. Based on the obtained data, we consider a further reduction of mitochondrial import of pyruvate and rTCA intermediates highly attractive. Moreover, the approaches presented in the current study might also be valuable for improving SA production when sugars (instead of glycerol) are the source of carbon.


Assuntos
Saccharomyces cerevisiae , Ácido Succínico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Glicerol/metabolismo , Dióxido de Carbono/metabolismo , NAD/metabolismo , Ácido Pirúvico/metabolismo , Membranas Mitocondriais/metabolismo , Carbono/metabolismo , Engenharia Metabólica/métodos
13.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611912

RESUMO

This report demonstrates the first asymmetric synthesis of enantiopure structured triacylglycerols (TAGs) of the ABC type presenting three non-identical fatty acids, two of which are unsaturated. The unsaturated fatty acids included monounsaturated oleic acid (C18:1 n-9) and polyunsaturated linoleic acid (C18:2 n-6). This was accomplished by a six-step chemoenzymatic approach starting from (R)- and (S)-solketals. The highly regioselective immobilized Candida antarctica lipase (CAL-B) played a crucial role in the regiocontrol of the synthesis. The synthesis also benefited from the use of the p-methoxybenzyl (PMB) ether protective group, which enabled the incorporation of two different unsaturated fatty acids into the glycerol skeleton. The total of six such TAGs were prepared, four constituting the unsaturated fatty acids in the sn-1 and sn-2 positions, with a saturated fatty acid in the remaining sn-3 position of the glycerol backbone. In the two remaining TAGs, the different unsaturated fatty acids accommodated the sn-1 and sn-3 end positions, with the saturated fatty acid present in the sn-2 position. Enantiopure TAGs are urgently demanded as standards for the enantiospecific analysis of intact TAGs in fats and oils.


Assuntos
Ácidos Graxos , Glicerol , Éteres , Ácido Linoleico , Triglicerídeos
14.
Physiol Plant ; 176(3): e14308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666320

RESUMO

Mixotrophy, the concurrent use of inorganic and organic carbon in the presence of light for microalgal growth, holds ecological and industrial significance. However, it is poorly explored in diatoms, especially in ecologically relevant species like Skeletonema marinoi. This study strategically employed mixotrophic metabolism to optimize the growth of a strain of Skeletonema marinoi (Sm142), which was found potentially important for biomass production on the west coast of Sweden in winter conditions. The aim of this study was to discern the most effective organic carbon sources by closely monitoring microalgal growth through the assessment of optical density, chlorophyll a fluorescence, and biomass concentration. The impact of various carbon sources on the physiology of Sm142 was investigated using photosynthetic and respiratory parameters. The findings revealed that glycerol exhibited the highest potential for enhancing the biomass concentration of Sm142 in a multi-cultivator under the specified experimental conditions, thanks to the increase in respiration activity. Furthermore, the stimulatory effect of glycerol was confirmed at a larger scale using environmental photobioreactors simulating the winter conditions on the west coast of Sweden; it was found comparable to the stimulation by CO2-enriched air versus normal air. These results were the first evidence of the ability of Skeletonema marinoi to perform mixotrophic metabolism during the winter and could explain the ecological success of this diatom on the Swedish west coast. These findings also highlight the importance of both organic and inorganic carbon sources for enhancing biomass productivity in harsh winter conditions.


Assuntos
Biomassa , Diatomáceas , Fotossíntese , Estações do Ano , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia , Diatomáceas/metabolismo , Fotossíntese/fisiologia , Suécia , Carbono/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Microalgas/fisiologia , Clorofila A/metabolismo , Clorofila/metabolismo , Glicerol/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-38634749

RESUMO

A Gram-stain-negative bacterium, designated XZ-24T, was isolated from sediment of a river in Mianyang city, Sichuan province, PR China. Cells (1.0-2.0 µm long and 0.4-0.5 µm in width) were strictly aerobic, non-spore-forming, rod shaped, prosthecate and motile by means of a polar flagellum. Growth occurred at 10-37 °C (optimum, 30 °C), at pH 5.0-9.0 (optimum pH 7.0) and with 0-3.0 % (w/v) NaCl (optimum 1.0 % NaCl). The results of phylogenetic analysis based on genomes and 16S rRNA gene sequences indicated that XZ-24T formed a distinct phyletic branch within the family Caulobacteraceae and was most closely related to members of the genera Brevundimonas, Caulobacter and Phenylobacterium with 95.3-96.5 % 16S rRNA gene sequence similarities. The average amino acid identities (AAI) between XZ-24T and species of the family Caulobacteraceae were 47.0-64.5 %, which were below the genus boundary (70 %). The predominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω7c 11-methyl and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), the isoprenoid quinone was Q-10, and the major polar lipids were 1,2-di-O-acyl-3-O-α-d-glucopyranuronosyl glycerol; 1,2-di-O-acyl-3-O-[d-glucopyranosyl-(1→4)-α-d glucopyranuronosyl] glycerol and phosphatidylglycerol. The genome size of XZ-24T was 2.64 Mb with a DNA G+C content of 68.9 %. On the basis of the evidence presented in this study, strain XZ-24T represents a novel species of a novel genus in the family Caulobacteraceae, for which the name Peiella sedimenti gen. nov., sp. nov. (Type strain XZ-24T=CCTCC AB 20 23 094T=KCTC 8038T) is proposed.


Assuntos
Caulobacteraceae , Rios , Composição de Bases , Ácidos Graxos/química , Glicerol , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
16.
AAPS PharmSciTech ; 25(5): 89, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641711

RESUMO

Oral candidiasis is a fungal infection affecting the oral mucous membrane, and this research specifically addresses on a localized treatment through fluconazole-loaded ibuprofen in situ gel-based oral spray. The low solubility of ibuprofen is advantageous for forming a gel when exposed to an aqueous phase. The 1% w/w fluconazole-loaded in situ gel oral sprays were developed utilizing various concentrations of ibuprofen in N-methyl pyrrolidone. The prepared solutions underwent evaluation for viscosity, surface tension, contact angle, water tolerance, gel formation, interface interaction, drug permeation, and antimicrobial studies. The higher amount of ibuprofen reduced the surface tension and retarded solvent exchange. The use of 50% ibuprofen as a gelling agent demonstrated prolonged drug permeation for up to 24 h. The incorporation of Cremophor EL in the formulations resulted in increased drug permeation and exhibited effective inhibition against Candida albicans, Candida krusei, Candida lusitaniae, and Candida tropicalis. While the Cremophor EL-loaded formulation did not exhibit enhanced antifungal effects on agar media, its ability to facilitate the permeation of fluconazole and ibuprofen suggested potential efficacy in countering Candida invasion in the oral mucosa. Moreover, these formulations demonstrated significant thermal inhibition of protein denaturation in egg albumin, indicating anti-inflammatory properties. Consequently, the fluconazole-loaded ibuprofen in situ gel-based oral spray presents itself as a promising dosage form for oropharyngeal candidiasis treatment.


Assuntos
Candidíase Bucal , Fluconazol , Glicerol/análogos & derivados , Fluconazol/farmacologia , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Sprays Orais , Ibuprofeno/farmacologia , Antifúngicos , Candida albicans , Testes de Sensibilidade Microbiana
17.
BMC Infect Dis ; 24(1): 379, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584271

RESUMO

BACKGROUND: A major worldwide health issue is the rising frequency of resistance of bacteria.Drug combinations are a winning strategy in fighting resistant bacteria and might help in protecting the existing drugs.Monolaurin is natural compound extracted from coconut oil and has a promising antimicrobial activity against Staphylococcus.aureus. This study aims to examine the efficacy of monolaurin both individually and in combination with ß-lactam antibiotics against Staphylococcus aureus isolates. METHODS: Agar dilution method was used for determination of minimum inhibitory concentration (MIC) of monolaurin against S.aureus isolates. Scanning electron microscope (SEM) was used to detect morphological changes in S.aureus after treatment with monolaurin. Conventional and Real-time Polymerase chain reaction (RT-PCR) were performed to detect of beta-lactamase (blaZ) gene and its expressional levels after monolaurin treatment. Combination therapy of monolaurin and antibiotics was assessed through fractional inhibitory concentration and time-kill method. RESULTS: The antibacterial activity of monolaurin was assessed on 115 S.aureus isolates, the MIC of monolaurin were 250 to 2000 µg/ml. SEM showed cell elongation and swelling in the outer membrane of S.aureus in the prescence of 1xMIC of monolaurin. blaZ gene was found in 73.9% of S.aureus isolates. RT-PCR shows a significant decrease in of blaZ gene expression at 250 and 500 µg/ml of monolaurin. Synergistic effects were detected through FIC method and time killing curve. Combination therapy established a significant reduction on the MIC value. The collective findings from the antibiotic combinations with monolaurin indicated synergism rates ranging from 83.3% to 100%.In time-kill studies, combination of monolaurin and ß-lactam antibiotics produced a synergistic effect. CONCLUSION: This study showed that monolaurin may be a natural antibacterial agent against S. aureus, and may be an outstanding modulator of ß-lactam drugs. The concurrent application of monolaurin and ß-lactam antibiotics, exhibiting synergistic effects against S. aureus in vitro, holds promise as potential candidates for the development of combination therapies that target particularly, patients with bacterial infections that are nearly incurable.


Assuntos
Lauratos , Staphylococcus aureus Resistente à Meticilina , Monoglicerídeos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , 60693 , Glicerol/farmacologia , Sinergismo Farmacológico , Antibacterianos/farmacologia , Monobactamas/farmacologia , Testes de Sensibilidade Microbiana
18.
Reprod Domest Anim ; 59(3): e14551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462999

RESUMO

Cryopreservation is one of the reliable techniques for long-term storage of sperm. The success of this technique depends on the choice of cryoprotectant; therefore, a plethora of literature has reported the effects of different cryoprotective agents so far. Kappa-carrageenan (κ-carrageenan) is a hydrocolloid polysaccharide extracted from red marine seaweed. Its unique property makes it a promising option as a non-colligative cryoprotectant. The current study aims to evaluate the cryoprotective effect of k-carrageenan along with glycerol on ram sperm quality both after equilibration and freezing. Nine Kajli rams were utilized in this experiment for semen collection through an artificial vagina maintained at 42°C. Qualified samples were diluted in tris egg yolk glycerol (TEYG) extender containing different concentrations of k-carrageenan as 0 mg/mL (control), 0.2, 0.5, 0.8 and 1 mg/mL. Post-thaw assessment was done at 37°C after 24 h of storage, which showed a significant improvement (p < .05) in sperm viability, motility, membrane and acrosome integrity in an extender containing k-carrageenan at a concentration of 0.5 mg/mL compared to control. It is concluded from the current study that the combination of glycerol and 0.5 mg/mL concentration of k-carrageenan improved the sperm post-thaw quality.


Assuntos
Preservação do Sêmen , Sêmen , Masculino , Ovinos , Animais , Carragenina/farmacologia , Glicerol/farmacologia , Motilidade dos Espermatozoides , Espermatozoides , Crioprotetores/farmacologia , Criopreservação/veterinária , Criopreservação/métodos , Carneiro Doméstico , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Suplementos Nutricionais
19.
Geobiology ; 22(2): e12589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465505

RESUMO

The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (δ13 C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative δ13 C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable δ13 C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86 , CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.


Assuntos
Archaea , Éteres de Glicerila , Água , Archaea/química , Mar Negro , Sedimentos Geológicos/química , Glicerol , Lipídeos/química , Água do Mar/química
20.
Appl Microbiol Biotechnol ; 108(1): 250, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430417

RESUMO

The fungal diglycosidase α-rhamnosyl-ß-glucosidase I (αRßG I) from Acremonium sp. DSM 24697 catalyzes the glycosylation of various OH-acceptors using the citrus flavanone hesperidin. We successfully applied a one-pot biocatalysis process to synthesize 4-methylumbellipheryl rutinoside (4-MUR) and glyceryl rutinoside using a citrus peel residue as sugar donor. This residue, which contained 3.5 % [w/w] hesperidin, is the remaining of citrus processing after producing orange juice, essential oil, and peel-juice. The low-cost compound glycerol was utilized in the synthesis of glyceryl rutinoside. We implemented a simple method for the obtention of glyceryl rutinoside with 99 % yield, and its purification involving activated charcoal, which also facilitated the recovery of the by-product hesperetin through liquid-liquid extraction. This process presents a promising alternative for biorefinery operations, highlighting the valuable role of αRßG I in valorizing glycerol and agricultural by-products. KEYPOINTS: • αRßG I catalyzed the synthesis of rutinosides using a suspension of OPW as sugar donor. • The glycosylation of aliphatic polyalcohols by the αRßG I resulted in products bearing a single rutinose moiety. • αRßG I catalyzed the synthesis of glyceryl rutinoside with high glycosylation/hydrolysis selectivity (99 % yield).


Assuntos
Acremonium , Hesperidina , Hesperidina/química , Glicerol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...